A Probability Index of the Robustness of a Causal Inference
نویسندگان
چکیده
Causal inference is an important, controversial topic in the social sciences, where it is difficult to conduct experiments or measure and control for all confounding variables. To address this concern, the present study presents a probability index to assess the robustness of a causal inference to the impact of a confounding variable. The information from existing covariates is used to develop a reference distribution for gauging the likelihood of observing a given value of the impact of a confounding variable. Applications are illustrated with an empirical example pertaining to educational attainment. The methodology discussed in this study allows for multiple partial causes in the complex social phenomena that we study, and informs the controversy about causal inference that arises from the use of statistical models in the social sciences.
منابع مشابه
ROBUSTNESS OF THE TRIPLE IMPLICATION INFERENCE METHOD BASED ON THE WEIGHTED LOGIC METRIC
This paper focuses on the robustness problem of full implication triple implication inference method for fuzzy reasoning. First of all, based on strong regular implication, the weighted logic metric for measuring distance between two fuzzy sets is proposed. Besides, under this metric, some robustness results of the triple implication method are obtained, which demonstrates that the triple impli...
متن کاملBayesian Probabilities for Constraint-Based Causal Discovery
We target the problem of accuracy and robustness in causal inference from finite data sets. Our aim is to combine the inherent robustness of the Bayesian approach with the theoretical strength and clarity of constraint-based methods. We use a Bayesian score to obtain probability estimates on the input statements used in a constraint-based procedure. These are subsequently processed in decreasin...
متن کاملCausal inference using invariant prediction: identification and confidence intervals
What is the difference of a prediction that is made with a causal model and a non-causal model? Suppose we intervene on the predictor variables or change the whole environment. The predictions from a causal model will in general work as well under interventions as for observational data. In contrast, predictions from a non-causal model can potentially be very wrong if we actively intervene on v...
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملReliability analysis of rubble-mound breakwaters against the failure due to the armor layer instability based on the fuzzy random variables theory: A case study of Anzali Port breakwater
Breakwaters are among the most frequently-used coastal protective structures and their stability is vital to avoid turbulence at the ports. The main purpose of the present research is to use the theory of fuzzy random variables and the second-order reliability method (SORM) to study the reliability of a rubble-mound breakwater against the failure due to the armor layer instability. The limit-st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004